p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.41C22, C24.266C23, C23.335C24, C22.1452+ 1+4, C4.31C22≀C2, (C2×D4).285D4, C24⋊3C4⋊16C2, (C2×C42)⋊23C22, (D4×C23).12C2, (C22×C4).378D4, C23.163(C2×D4), C2.31(D4⋊5D4), (C22×Q8)⋊2C22, C22⋊3(C4.4D4), (C22×C4).56C23, C23.302(C4○D4), C23.10D4⋊22C2, (C23×C4).348C22, C22.215(C22×D4), C2.C42⋊66C22, C24.3C22⋊38C2, (C22×D4).508C22, C2.14(C22.29C24), (C2×C22⋊Q8)⋊9C2, (C4×C22⋊C4)⋊58C2, (C2×C4⋊C4)⋊16C22, (C2×C4.4D4)⋊8C2, (C2×C4).319(C2×D4), C2.23(C2×C22≀C2), C2.11(C2×C4.4D4), (C2×C22⋊C4)⋊18C22, C22.212(C2×C4○D4), SmallGroup(128,1167)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.335C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=g2=a, f2=ba=ab, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 1220 in 544 conjugacy classes, 124 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C4.4D4, C23×C4, C22×D4, C22×D4, C22×Q8, C25, C4×C22⋊C4, C24⋊3C4, C24.3C22, C23.10D4, C2×C22⋊Q8, C2×C4.4D4, D4×C23, C23.335C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C4.4D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C22≀C2, C2×C4.4D4, C22.29C24, D4⋊5D4, C23.335C24
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 20)(2 17)(3 18)(4 19)(5 13)(6 14)(7 15)(8 16)(9 32)(10 29)(11 30)(12 31)(21 26)(22 27)(23 28)(24 25)
(1 24)(2 21)(3 22)(4 23)(5 12)(6 9)(7 10)(8 11)(13 31)(14 32)(15 29)(16 30)(17 26)(18 27)(19 28)(20 25)
(1 28)(2 27)(3 26)(4 25)(5 6)(7 8)(9 12)(10 11)(13 14)(15 16)(17 22)(18 21)(19 24)(20 23)(29 30)(31 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 8 18 14)(2 12 19 29)(3 6 20 16)(4 10 17 31)(5 28 15 21)(7 26 13 23)(9 25 30 22)(11 27 32 24)
(1 17 3 19)(2 18 4 20)(5 32 7 30)(6 29 8 31)(9 15 11 13)(10 16 12 14)(21 27 23 25)(22 28 24 26)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,20)(2,17)(3,18)(4,19)(5,13)(6,14)(7,15)(8,16)(9,32)(10,29)(11,30)(12,31)(21,26)(22,27)(23,28)(24,25), (1,24)(2,21)(3,22)(4,23)(5,12)(6,9)(7,10)(8,11)(13,31)(14,32)(15,29)(16,30)(17,26)(18,27)(19,28)(20,25), (1,28)(2,27)(3,26)(4,25)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,22)(18,21)(19,24)(20,23)(29,30)(31,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,18,14)(2,12,19,29)(3,6,20,16)(4,10,17,31)(5,28,15,21)(7,26,13,23)(9,25,30,22)(11,27,32,24), (1,17,3,19)(2,18,4,20)(5,32,7,30)(6,29,8,31)(9,15,11,13)(10,16,12,14)(21,27,23,25)(22,28,24,26)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,20)(2,17)(3,18)(4,19)(5,13)(6,14)(7,15)(8,16)(9,32)(10,29)(11,30)(12,31)(21,26)(22,27)(23,28)(24,25), (1,24)(2,21)(3,22)(4,23)(5,12)(6,9)(7,10)(8,11)(13,31)(14,32)(15,29)(16,30)(17,26)(18,27)(19,28)(20,25), (1,28)(2,27)(3,26)(4,25)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,22)(18,21)(19,24)(20,23)(29,30)(31,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,18,14)(2,12,19,29)(3,6,20,16)(4,10,17,31)(5,28,15,21)(7,26,13,23)(9,25,30,22)(11,27,32,24), (1,17,3,19)(2,18,4,20)(5,32,7,30)(6,29,8,31)(9,15,11,13)(10,16,12,14)(21,27,23,25)(22,28,24,26) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,20),(2,17),(3,18),(4,19),(5,13),(6,14),(7,15),(8,16),(9,32),(10,29),(11,30),(12,31),(21,26),(22,27),(23,28),(24,25)], [(1,24),(2,21),(3,22),(4,23),(5,12),(6,9),(7,10),(8,11),(13,31),(14,32),(15,29),(16,30),(17,26),(18,27),(19,28),(20,25)], [(1,28),(2,27),(3,26),(4,25),(5,6),(7,8),(9,12),(10,11),(13,14),(15,16),(17,22),(18,21),(19,24),(20,23),(29,30),(31,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,8,18,14),(2,12,19,29),(3,6,20,16),(4,10,17,31),(5,28,15,21),(7,26,13,23),(9,25,30,22),(11,27,32,24)], [(1,17,3,19),(2,18,4,20),(5,32,7,30),(6,29,8,31),(9,15,11,13),(10,16,12,14),(21,27,23,25),(22,28,24,26)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.335C24 | C4×C22⋊C4 | C24⋊3C4 | C24.3C22 | C23.10D4 | C2×C22⋊Q8 | C2×C4.4D4 | D4×C23 | C22×C4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 4 | 2 | 4 | 1 | 2 | 1 | 4 | 8 | 8 | 2 |
Matrix representation of C23.335C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,1,0,0,0,0,3,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C23.335C24 in GAP, Magma, Sage, TeX
C_2^3._{335}C_2^4
% in TeX
G:=Group("C2^3.335C2^4");
// GroupNames label
G:=SmallGroup(128,1167);
// by ID
G=gap.SmallGroup(128,1167);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,120,758,723,268,675,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=g^2=a,f^2=b*a=a*b,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations